Small molecule p300/catenin antagonist enhances hematopoietic recovery after radiation

نویسندگان

  • Yi Zhao
  • Kaijin Wu
  • Cu Nguyen
  • Goar Smbatyan
  • Elisabeth Melendez
  • Yusuke Higuchi
  • Yibu Chen
  • Michael Kahn
چکیده

There is currently no FDA approved therapeutic agent for ARS mitigation post radiation exposure. Here we report that the small molecule YH250, which specifically antagonizes p300/catenin interaction, stimulates hematopoiesis in lethally or sublethally irradiated mice. A single administration of YH250 24 hours post irradiation can significantly stimulate HSC proliferation, improve survival and accelerate peripheral blood count recovery. Our studies suggest that promotion of the expansion of the remaining HSC population via stimulation of symmetric non-differentiative proliferation is at least part of the mechanism of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific inhibition of CBP/beta-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation.

Wnt/beta-catenin signaling has been shown to promote self-renewal in a variety of tissue stem cells, including neuronal stem cells and hematopoietic stem cells. However, activation of the Wnt/beta-catenin pathway promoted and inhibition of the pathway prevented differentiation of neuronal precursor cells. A clear explanation for the differential effects of Wnt/beta-catenin activation on neurona...

متن کامل

Loss of β-catenin triggers oxidative stress and impairs hematopoietic regeneration.

Accidental or deliberate ionizing radiation exposure can be fatal due to widespread hematopoietic destruction. However, little is known about either the course of injury or the molecular pathways that regulate the subsequent regenerative response. Here we show that the Wnt signaling pathway is critically important for regeneration after radiation-induced injury. Using Wnt reporter mice, we show...

متن کامل

Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs) are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the ma...

متن کامل

Effect of human amnion-derived multipotent progenitor cells on hematopoietic recovery after total body irradiation in C57BL/6 mice

Background: The hematopoietic system is sensitive to the adverse effects of ionizing radiation. Cellular therapies utilizing mesenchymal stem cells or vascular endothelial cells have been explored as potential countermeasures for radiation hematopoietic injuries. We investigated cells cultured from amnion                ...

متن کامل

Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD® in mice

The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD(®), also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017